HEINRICH «HERTZ «INSTITUT FÜR SCHWINGUNGSFORSCHUNG BERLIN, CHARLOTTENBURG

# Technischer Bericht Nr. 161

Modellbildung zur Kalman=Filterung der Doppler=Trägheits=Navigation

von

Dipl.-Ing. Peter Meißner Dr.-Ing. Uwe Schönwandt



Berlin 1 9 7 3

# HEINRICH-HERTZ-INSTITUT FÜR SCHWINGUNGSFORSCHUNG

BERLIN-CHARLOTTENBURG

Technischer Bericht Nr. 161

# Modellbildung zur Kalman-Filterung der Doppler-Trägheits-Navigation

nt für So Bücherei Nr.

#### von

### Dipl.-Ing.P.Meißner Dr.-Ing.U.Schönwandt

Berlin 1973

#### Technischer Bericht Nr. 161

## Modellbildung zur Kalman-Filterung bei der Doppler-Trägheit-Navigation

#### Zusammenfassung:

Die Kalmanfiltertechnik ermöglicht theoretisch eine relativ genaue gemeinsame Auswertung von Meßdaten, die von verschiedenen Navigationsverfahren gleichzeitig anfallen. Diese Arbeit beschreibt eine Kopplung von Trägheitsnavigation und Dopplergeschwindigkeitsmessung. Es wird versucht, die in der Literatur häufig dafür erwähnten Divergenzen in den Fehlern durch fehlende vollständige Beobachtbarkeit der gewählten Modelle zu erklären.

Die Bearbeiter

Peter Ne Bos

(Dipl.-Ing. P. Meißner)

M. Solonwant

(Dr.-Ing. U. Schönwandt)

Der Abteilungsleiter:

Jomfried Horstmann

(Prof.Dr.-Ing.I.Hartmann)

Der Institutsdirektor:

Eran (Prof.Dr.-Ing.Erich R.Berger)

Berlin-Charlottenburg, den 15. 3. 1973

## Inhaltsverzeichnis

| 1. Einleitung                                        | 2          |
|------------------------------------------------------|------------|
| 2. Beschreibung der Meßverfahren                     | 3          |
| 2.1 Trägheitsnavigation                              | 3          |
| 2.2 Geschwindigkeitsmessung mittels Dopplerradar     | 7          |
| 3. Zur Anwendung des Kalmanfilters                   | 8          |
| 3.1 Die Kalman-Filter Gleichungen                    | 8          |
| 3.2 Zur Beobachtbarkeit des Modells                  | 10         |
| 3.3 Zur Liniarisierung des Modells                   | 15         |
| 3.4 Die Modellgleichungen                            | 18         |
| 4. Zur Simulation                                    | 21         |
| 4.1 Simulation der Flugzeugbewegung                  | 21         |
| 4.2 Simulation der Trägheitsnavigation               | 23         |
| 4.3 Simulation der Doppler-Geschwindigkeitsmessung   | 24         |
| 4.4 Simulation der barometrischen Höhenmessung       | 25         |
| 4.5 Simulation des Kalman-Filters                    | 25         |
| 5. Auswertung                                        | 27         |
| 5.1 Der Einfluß der Nullpunktsfehler in den Be-      |            |
| schleunigungskeitsmessern                            | 27         |
| 5.2 Der Einfluß der Nullpunktsfehler in der Doppler- |            |
| Geschwindigkeitsmessung                              | <b>3</b> 0 |
| 5.3 Einige Beispiele                                 | 31         |

Seite

Zur Gleichungsnummerierung:

Innerhalb eines Kapitels: fortlaufend Zitieren von Gleichungen aus anderen Kapiteln: Hinzusetzen der Nummer des Kapitels; z.B. Gl. (3/16) heißt Gl. (16) aus Kapitel 3

Zur Schreibweise:

A Matrix

b Spaltenvektor

 $\underline{\mathbf{b}}^{\mathrm{T}}$  Zeilenvektor

hochgestelltes T = Transposition

#### 1. Einleitung

weiteenend zu umgehen Die Kalmanfiltertechnik hat auf dem Gebiet der Flugzeugnavigation eine gewisse Bedeutung erlangt, unter anderem deshalb, weil sie theoretisch eine relativ genaue gemeinsame Auswertung von Meßdaten, die von verschiedenen Bordgeräten anfallen, ermöglicht. In der Literatur gibt es verschiedene Beschreibungen implementierter Anlagen (z.B. [10] ), allerdings fehlte immer der Satz der schließlich realisierten Gleichungen und auch Hinweise auf die zugrunde gelegten Modelle sind meistens so allgemein gehalten, daß eine Rekonstruktion der Gleichungen nicht möglich ist. [5] gibt eine Übersicht über die Fehler in Abhängigkeit von der Ordnung der Modelle jedoch ohne die Modelle näher zu beschreiben. Häufig werden Divergenzen in den Fehlern festgestellt (z.B. [13] ). Theoretische Verfahren zu deren Beseitigung wurden entwickelt (z.B. in [6], [16])

In den in diesem Bericht beschriebenen Untersuchungen erwies sich die Wahl der Zustandsvariablen und die Beobachtbarkeit des gewählten Modelles als entscheidend bei diesem Problem. So stellte sich zunächst heraus, daß es bei der untersuchten Doppler-Trägheitsnavigation sinnlos war, sowohl Driften als auch Beschleunigungsmessernullpunktsfehler als Zustandsvariable. einzuführen, weil die Beobachtbarkeit dieser Größen nicht gegeben ist. Ferner konnte gezeigt werden, daß auch eine gleichzeitige Abschätzung von Kreiseldriften und Dopplerradarnullpunktsfehler aus dem selben Grund nicht möglich ist. Diese Tatsache führte direkt zu einem divergierenden Positonsfehler. Es wird weiter gezeigt, daß die Nullpunktsfehlerder Beschleunigungsmesser eine Neigung der Plattform gegenüber der Horizontalen hervorrufen und kaum die Schätzung der Geschwindigkeit beeinflussen.

In [14 Seite 313] und [16] wird lediglich auf die bekannte Schwierigkeit bei der Azimut driftabschätzung hingewiesen. Es wird daher vermutet, daß ein Teil der beobachteten Divergenzen auf die Nichtbeobachtbarkeit der Zustände zurückgeführt werden kann. In einer abschließenden Bemerkung wird angegeben, wie dieses Problem durch eine geeignete Bodenausrichtung der Plattform weitgehend zu umgehen ist.

Bei der Beschreibung der durchgeführten Simulation einer Flugphase wird versucht, alle Fakten wie Modellgleichungen, Zahlenwerte usw.anzugeben, so daß theoretisch eine Rekonstruktion möglich sein sollte, bzw. ein Vergleich mit anderen Simulationen vorgenommen werden kann.

#### 2. Beschreibung der Meßverfahren

#### 2.1 Trägheitsnavigation

Eine Methode der Positionsbestimmung von Flugzeugen ist die Trägheitsnavigation. Sie beruht auf der Messung der Beschleunigung, die mit Hille dreier senkrecht aufeinanderstehender Beschleunigungsmesserdurchgeführt wird. Um eine feste Ausrichtung der Meßinstrumente zu gewährleisten, werden sie auf einer kreiselstabilisierten Plattform montiert, die meist entsprechend der Bewegung um die Erde mitgeführt wird. Dieses Mitführen kann unterteilt werden in eine Bewegung, die die Plattform parallel zur Erdoberfläche hält ("Schuler tuned platform") und eine Bewegung, die die Plattform nach Norden ausrichtet ("north slaved platform"). Aus der Beschleunigungsmessung kann unter de Berücksichtigung der relativen Bewegung gegenüber einem erdfesten Koordinatensystem die Position bestimmt werden. Im folgenden werden nur die zum weiteren Verständnis notwendigen Gleichungen angegeben. Ihre Herleitung findet man z.B. in 3 u. [12] .

Dazu werden folgende Koordinatensysteme eingeführt (siehe Bild 1) 1) Raumfestes Koordinatensystem X, Y, Z

- 2) Erdfestes Koordinatensystem Ø, 0, R
  - mit Ø
    - geographische Länge
    - θ geographische Breite
- R Abstand vom Erdmittelpunkt
  - 3) Lokales Koordinatensystem  $\mathbf{x}_{E}$ ,  $\mathbf{x}_{N}$ ,  $\mathbf{x}_{Z}$



0° Länge

Äquator

1111

And

Star Sur Sant

Bild 1: Koordinatensysteme

unschwindinkerten telativ zer troopereigegene in den tokairo kin dinaten Winkelseschainigkotten er tale, angegeben um "La lokater, områnarske Winkelgescheindighelten "er Plattforr relativ zur bröd geschen av ete laaden Koerdinaten Brdreding kinkelgescheindigkeit er frås um hat soft Als Bewegungsgleichungen der ideal mitgeführten Plattform ergeben sich:

 $\dot{V}_E = A_E - (2\Omega_N - g_N)V_Z - (2\Omega_Z - g_Z)V_N$ (1)

$$V_N = \Pi_N - \frac{1}{2}I_z - \frac{1}{2}V_z - \frac{1}{2}V_z - \frac{1}{2}V_z$$

$$V_l = A - \frac{1}{2}V_l - \frac{1}{2}V_l - \frac{1}{2}V_l - \frac{1}{2}V_l - \frac{1}{2}V_l$$
(2)

- $v_z = H_z S_E V_N$  $\dot{\Theta} = -S_E$ 12 12N - JNIVE - 9(R) (4)
- $\dot{\phi} = S_N / \cos(\theta)$  $\dot{R} = V_z$ (5)
  - (6)

 $g_E = -V_N/R$ ,  $g_N = V_E/R$ ,  $g_T = V_E/R$  tan( $\Theta$ )  $\Omega_N = \Omega \cos(\theta), \ \Omega_z = \Omega \sin(\theta), \ g(R) \approx g_{\circ} (R_{\circ}/R)^2$ 

mit A<sub>E</sub>, A<sub>N</sub>, A<sub>7</sub>

 $v_{E}, v_{N}, v_{Z}$ 

 $S_E, S_N, S_Z$ 

 $\Omega_{\rm N}, \Omega_{\rm N}$ 

R

Ω

<sup>g</sup>o

Anzeigen fehlerfreier Beschleunigungsmesser, wenn sie genau in Richtung der lokalen Koordinaten ausgerichtet wären

Geschwindigkeiten relativ zur Erde, angegeben in den lokalen Koordinaten

Winkelgeschwindigkeiten der Erde, angegeben vum die lokalen Koordinaten

Winkelgeschwindigkeiten der Plattform relativ zur Erde, angegeben um die lokalen Koordinaten

Erdradius

Winkelgeschwindigkeit der Erde um die Polachse

Erdbeschleunigung

Durch Unvollkommenheiten der Ausrichtung und Meßungenauigkeiten ergeben sich unter anderem folgende Fehler in den Messungen:

$$\begin{array}{l} A_{E_{m}} - A_{E} &= -\gamma A_{N} + \beta A_{Z} + \varepsilon_{E} + b_{E} \qquad (7) \\ A_{N_{m}} - A_{N} &= -\alpha A_{Z} + \gamma A_{E} + \varepsilon_{N} + b_{N} \qquad (8) \\ A_{Z_{m}} - A_{Z} &= -\beta A_{E} + \alpha A_{N} + \varepsilon_{Z} + b_{Z} \qquad (9) \\ \dot{\alpha} &= S_{EC} - S_{E} + \beta \omega_{Z} + \gamma \omega_{N} + \Delta_{E} \qquad (10) \\ \dot{\beta} &= \omega_{NC} - \omega_{N} + \gamma S_{E} + \alpha \omega_{Z} + \Delta_{N} \qquad (11) \\ \dot{\gamma} &= \omega_{ZC} - \omega_{Z} + \alpha \omega_{N} + \beta \omega_{E} + \Delta_{Z} \qquad (12) \\ \omega_{N} &= S_{N} + \Omega_{N} , \quad \omega_{Z} = S_{Z} + \Omega_{Z} \\ \omega_{NC} &= S_{NC} + \Omega_{NC} , \quad \omega_{ZC} = S_{ZC} + \Omega_{ZC} \end{array}$$

mit

Winkel zwischen den lokalen Koordinatenachsen und der Plattform

Anzeigen der Beschleunigungsmesser, wenn die Plattform gegenüber den lokalen Achsen um kleine Winkel  $\alpha$ ,  $\beta$ ,  $\gamma$  verdreht ist.

Meßrauschen der Beschleunigungsmesser (weiß angenommen)

Nullpunktsfehler der Beschleunigungsmesser (konstant angenommen)

absolute Winkelgeschwindigkeiten der Plattform, angegeben in den lokalen Koordinaten errechnete Nachführwinkelgeschwindigkeiten errechnete Winkelgeschwindigkeiten der Plattform relativ zur Erde, angegeben in den lokalen Koordinaten

errechnete Winkelgeschwindigkeiten der Erde, angegeben in den lokalen Koordinaten Driftwinkelgeschwindigkeiten der Plattform (farbig angenommen)

 $\begin{aligned} \mathcal{E}_{E}, \mathcal{E}_{N}, \mathcal{E}_{Z} \\ \mathcal{D}_{E}, \mathcal{D}_{N}, \mathcal{D}_{Z} \\ \mathcal{S}_{E}, \mathcal{Q}_{N}, \mathcal{Q}_{Z} \\ \mathcal{S}_{EC}, \mathcal{Q}_{NC}, \mathcal{Q}_{ZC} \\ \mathcal{S}_{EC}, \mathcal{S}_{NC}, \mathcal{S}_{ZC} \\ \mathcal{\Omega}_{NC}, \mathcal{\Omega}_{ZC} \\ \mathcal{\Delta}_{E}, \mathcal{\Delta}_{N}, \mathcal{\Delta}_{Z} \end{aligned}$ 

x, B, y

Arm, Anm, Arm

- 5 -

In der Position ergibt sich hierdurch ein Fehler, der mit der Zeit wächst und dem sinusförmige Schwingungen überlagert sind (84 Minuten- und 24 Stundenfehler) (siehe z.B. [3]). Außerdem divergiert die Messung der Höhe bei der reinen Trägheitsnavigation wegen des nichtlinearen Zusammenhangs zwischen Höhe und Erdbeschleunigung (siehe 11 S.83).Aus diesem Grund wird die Höhe meist barometrisch gemessen.

gyingdaganlaK hoo **\_n6**risinanA nab muthadonamodicove. Kanad

Wesentlich für die Genauigkeit der Trägheitsnavigation ist eine gute Ausrichtung der Plattform bei Beginn des Fluges (ground align-ment). Viele Arbeiten befassen sich gerade mit dieser Phase ([9], [16]).

Um die mit der Zeit anwachsenden Fehler in Grenzen zu halten, wird die Trägheitsnavigation mit weiteren Verfahren wie beispielsweise der Geschwindigkeitsmessung mittels Dopplerradar gekoppelt. Diese Kopplung verbindet die guten Kurzzeiteigenschaften der Trägheitsnavigation mit den guten Langzeiteigenschaften der anderen Verfahren.

Valionable obter der Beschleurigungsmosser (commuter any education)'

Were , Tobeant number of don't in the transform

needuk muladol het redümennu k e

A sight Wink Steps windigheiten der Plattform, andegeben in des Iokalea Adordinaten errecheste Sathigh winkelgeschwindigkeiten serrechen Winhel eschwendigkeiten der flittlorm olde, zur Brde, angraben in den fokeleg Kertinaten

errachnerc'sintergesenwittigkeiten der 1. det angepeten ig der Jokalen Kaledinaten Friftwinkeigeschwindigketten der Plattform (Elette angenomien)

#### 2.2 Geschwindigkeitsmessung mittels Dopplerradar

Dieses Verfahren wird hier nur insoweit betrachtet, als es für die aufzustellenden Meßgleichungen wichtig ist. Es beruht auf der Messung der Frequenzverschiebung zwischen einer ausgesendeten und vom Boden reflektierten Radiowelle. Die Verschiebung ist proportional der Geschwindigkeit des Flugzeugs relativ zum Boden in Richtung der Ausbreitung der Radiowelle. Durch geeigneten Aufbau der Antenne kann der Betrag der Bodengeschwindigkeit  $V_{G}$  des Flugzeugs und der Winkel zwischen Flugzeuglängs achse und Bodengeschwindigkeit (Driftwinkel  $\alpha_{\rho}$ ) gemessen werden (siehe Bild 2). Ohne Kenntnis der Ausrichtung der Flugzeuglängs achse ist es somit nicht möglich, die Richtung der Geschwindigkeit zu ermitteln. Der Winkel zwischen der Flugzeugläng sachse und der lokalen Nordrichtung (Azimut-winkel 🚱 ) kann jedoch direkt von der Plattform abgelesen werden, so daß mit der Dopplermessung dann die Geschwindigkeit nach Betrag und Richtung bestimmt wird.

Als Gleichungen für die Dopplermessung werden stark vereinfacht angenommen (siehe Bild 2)

$$V_{GD} - V_G = W_{GD} + b_v$$

Es wird hier von dan w.W. in [11, N. 282] angagebenan di

 $\alpha_{dp} - \alpha_d = w_{dp} + b_{\alpha}$ 

(14)

 $V_{G}$ Bodengeschwindigkeit X Abdriftwinkel VGD, QdD Meßwerte der Dopplermessung WGD, WdD Meßrauschen (weiß angenommen) br, ba Nullpunktsfehler (konstant angenommen)

tern Kolmanijiter distançes asseement

- 7 -

tabeditefford( singthemergenets);sites/atbediets/sites/ disease Verfahring, wird bies aug insoweit betrachtet, als es the die sufzuste Syden Meligistehungen brodhtig ist. Es baonst Lugteng! schiebung swischen einer 7:00 Madiowelle, Die bsau metobnosegaus shwindigkeit des Flugis: grudelfeaseV usbrattung der Rum Boden 法官计判定的法 医流口回觉 Noroll elleworkbes reb mani ennein. a temp reep Maiburweisee wooloo wool waar ale al teb bao syusagu. 8 Witzuszgutt asnaaby: John W of some in twind is supported to ΘΔ (Dellewinker Obs) (Remondan wa Bild'2). Ohne Kennt-Θκ idain itmos co int on gmutnolisent tob als sulermitteln. Der Name andinity alb . doilada ACELEDSCRUIT veb codowiww ledgil -brow stission rab ban bada, a - istely reprint the solution of a hada which direct you der Plate. ath nuch. Esseemaniquel ast the first os unceleges much Bild 2: Geschwindigkeitsdreieck (Dopplermessung) als Gletchungen für die -RIBSAV

| $\Theta_{A}$          | Azimut>wink | cel   | - 2.2. | i sist | 10.5 \$300.55 |
|-----------------------|-------------|-------|--------|--------|---------------|
| $\alpha_{d}$          | Abdriftwink | cel   |        |        | 1             |
| $\Theta_{\mathbf{k}}$ | Kurswinkel  | gegen | die    | lokale | Nordachse     |

(22)

(24)

V<sub>w</sub> Windgeschwindigkeit

Bodengeschwindigkeit

Bodengeschwindigh it. In dieser Arbeit, wird die Kopplung von Trägheitsnavigation und Doppler-Geschwindigkeitsmessung mit Hilfe des Kalmanfilters durchgeführt.ommelogod meb esnewleM

sister nesseance driant

#### (Hemmokeyics Alew) medsenseleM 3. Zur Anwendung des Kalmanfilters demmonsers. 3.1 Die Kalmanfiltergleichungen

Es wird hier von den z.B. in [11, S. 282] angegebenen diskreten Kalmanfiltergleichungen ausgegangen:

Zugrunde liegt ein System

 $\underline{\mathbf{x}}_{n+1} = \mathbf{\cancel{p}}_{n} \underline{\mathbf{x}}_{n} + \underline{\mathbf{w}}_{n}$  $\underline{\mathbf{y}}_{n+1} = \underline{\mathbf{H}}_{n+1} \underline{\mathbf{x}}_{n+1} + \underline{\mathbf{v}}_{n+1}$ 

mit

Index zur Kennzeichnung der Zeit n Zustandsvektor der Ordnung n <u>ен</u> ¥ Transitionsmatrix der Ordnung nxn Beobachtungsmatrix der Ordnung mxn dem Mittellwo Meßvektor der Ordnung m Rauschvektor, der Ordnung n Gebt man Cavor aus, w beschreibt ein weißes, stationäres gaußverteiltes Rauschen mit dem Mittelwert Null und der Kovarianzmatrix Q positiv semidefinite Matrix der Ordnung nxn Q Rauschvektor der Ordnung m v v beschreibt ein weißes, stationäres, gaußverteiltes Rauschen mit dem Mittelwert Null und der Kovarianzmatrix R positiv definite Matrix der Ordnung mxm R Als im Sinne eines quadratischen Kriteriums optimale Fil ergeben sich die Kalmanfiltergleichungen:

(2) and

$$\begin{split} & X_{n+n/n+1} = \oint_{n} X_{n/n} - K_{n+1} \left[ Y_{n+1} - H_{n+1} \oint_{n} X_{n/n} \right] \quad (3) \\ & K_{n+1} = P_{n+1/n} H_{n+1} \left[ R + H_{n+1} P_{n+1/n} H_{n+1} \right]^{-1} \quad (4) \end{split}$$
PANANA = PANANA - KANA H BANANA (5)  $P_{n\pi/n} = \varphi_n P_{n/n} \varphi_n^T + Q$ obraz uz moldoril za**(6)**ia mū

mit

- n/n Index der Schätzung zur Zeit n aufgrund von Messungen bis zur Zeit n
- n+1/n Index der Schätzung (Prädiktion) zur Zeit n+1 aufgrund von Messungen bis zur Zeit n
- <u>
  <u>
  </u>
  <u>
  geschätzter Zustandsvektor (Ordnung n)
  </u></u>
- P Kovarianzmatrix des geschätzten Zustandes (Ordnung nxn)

#### 3.2 Zur Beobachtbarkeit des Modells

Eine Besonderheit bei dem betrachteten Navigationsproblem ist, daß in dem mathematischen Modell des Systems die Rauschgrößen mit einem von Null verschiedenen Mittelwert behaftet sind. Um dies zu berücksichtigen, werden die Modellgleichungen (1 u. 2) umgeschrieben.

$$\begin{aligned}
\underline{X}_{n+1} &= \oint_{n} \underline{X}_{n} + \underline{\Box}_{n} + \underline{W}_{n} \tag{7} \\
\underline{Y}_{n+1} &= \underbrace{H}_{n+1} \underline{X}_{n+1} + \underbrace{D}_{n+1} + \underline{Y}_{n+1} \tag{8}
\end{aligned}$$

 $\underline{W}_n$ ,  $(\underline{Y}_n)$  ist wieder stationäres, weißes, gaußverteiltes Rauschen mit dem Mittelwert Null und Kovarianzmatrix Q (R).

Geht man davon aus, daß sich die Mittelwerte nur sehr langsam ändern, so könnte man sie durch Einfügung neuer zusätzlicher Zustände in der Form

$$\underline{b}_{nn} = \underline{b}_n + \underline{\Delta}_n \tag{9}$$

(10)

bzw.

berücksichtigen.

Hierbei ist  $\Delta_n$  und  $\nabla_n$  weißes, stationäres gaußverteiltes Rauschen.

 $\underline{c}_{n+1} = \underline{d}_n + \underline{\nabla}_n$ 

Der abzuschätzende Zustandsvektor wäre dann um die Zahl der Mittelwerte vergrößert worden. Es zeigt sich, daß bei diesem Vorgehen die Beobachtbarkeit des Zustandsvektors bei nicht zeitvariablen Systemen nicht gewährleistet ist, d.h. nach [8, S. 338] wäre dann nicht die Möglichkeit einer "biasfreien" Schätzung gegeben.

Um dieses Problem zu verdeutlichen, wird ein kontinuierliches deterministisches System

(nrn gnumbel) sebarten Sustanten andes (Ordnung nan)

wird das System in Blockdiagonalform übergeführt:



- 11 - 81 -

mit x Zustandsvektor (Ordnung n)

- <u>d</u>, <u>b</u> konstante, aber unbekannte Vektoren (Ordnung n bzw. m)
- A, C bekannte zeitunabhängige Matrizen betrachtet.

Ohne Einschränkung der Allgemeinheit (darauf wird noch eingegangen) wird angenommen, daß die Matrix <u>A</u> eine Inverse besitzt. Durch Zustandserweiterung erhalten wir folgendes System:



gebildet aus diesen Matrizen. <u>E</u> sei die Einheitsmatrix, <u>O</u> die Nullmatrix. Die Ordnung der Untermatrizen erkennt man an der Ordnung der Vektoren <u>x</u>, <u>d</u>, <u>b</u>. - 12 -

wird das System in Blockdiagonalform übergeführt:

$$\begin{vmatrix} \widetilde{X} \\ \widetilde{\underline{d}} \\ \widetilde{\underline{d}} \\ \widetilde{\underline{d}} \\ \widetilde{\underline{b}} \end{vmatrix} = \begin{vmatrix} \widetilde{\underline{A}} & : & \widetilde{\underline{Q}} & : & \widetilde{\underline{Q}} \\ \widetilde{\underline{Q}} & : & \widetilde{\underline{Q}} \\ \widetilde{\underline{D}} & : & \widetilde{\underline{Q}} \\ \widetilde{\underline{b}} \\ \widetilde{\underline{b}} \end{vmatrix}$$
(18)  
$$\begin{pmatrix} \widetilde{X} \\ \widetilde{\underline{d}} \\ \widetilde{\underline{b}} \\ \widetilde{\underline{b}} \\ \widetilde{\underline{b}} \\ \widetilde{\underline{b}} \\ \widetilde{\underline{b}} \\ (19)$$
  
Aus dieser Darstellung erkennt man, daß d von den übrigen  
Zuständen vollständig entkoppelt werden kann. Es hat auch keinen

Einfluß auf die Messung. Hieraus folgt, daß d nicht beobacht-

bar ist. Wir betrachten jetzt das um <u>d</u> reduzierte System:

 $\begin{vmatrix} \widetilde{X} \\ \widetilde{b} \end{vmatrix} = \begin{vmatrix} \underline{A} \\ \underline{O} \end{vmatrix} \begin{vmatrix} \underline{O} \\ \underline{O} \end{vmatrix} \begin{vmatrix} \widetilde{X} \\ \widetilde{b} \end{vmatrix}$ 

. \*\*\*\*

(20)

(21)

Hier gilt folgender Satz:

teb da the fact

Das System (20) ist dann und nur dann beobachtbar, wenn das System

beobachtbar ist und wenn A regulär ist.

Zum Beweis definieren wir folgende Matrizen:



<u>B</u> ist eine (m+n)xn Matrix und <u>B</u> ein ((n+m)xm)x(n+m) Matrix. Der obige Satz ist zu folgendem äquivalent [17 S.178] Rang(<u>B</u>)=n , Rang(<u>A</u>)=n  $\iff$  Rang(<u>B</u>)=n+m

lai limed

Beweis: <u>hinreichend</u>:Rang(B) ≤ n+m (B hat nur n+m Spalten) Die ersten m Zeilen sind linear unabhängig, sie sind auch unabhängig von den restlichen Zeilen (trivial). Die nachsten n·m Zeilen haben den Rang n, da Rang(B)=n ∧ Rang(A)=n ⇒Rang(AB)=n Es folgt:Rang(B)=n+m

notwendig: aus Caley - Hamilton [17 S.77] folgt, die letzten (m-1) m Zeilen sind linearabhängig von den ersten Zeilen:

 $\underline{C}\underline{A}^{n+j} = -\lambda_{n-1} \underline{C}\underline{A}^{n+j-1} - \lambda_{n-2} \underline{C}\underline{A}^{n+j-2} + \cdots - \lambda_{\bullet} \underline{C}\underline{A}^{J}$ Beim Streichen dieser Zeilen in <u>B</u> bleibt der Rang erhalten:

 $Rang(\underline{\widetilde{B}}) = Rang[\underline{C}] = \underline{E}$ 

Nach gleicher Argumentation wie im ersten Teil des Beweises folgt:

$$\begin{array}{c|c} Rang \begin{bmatrix} \underline{C} & \underline{E} \\ \underline{B}\underline{A} \end{bmatrix} = Rang \begin{bmatrix} \underline{B}\underline{A} \end{bmatrix} + m = m + n \\ Rang (\underline{B}\underline{A}) = n \end{array}$$

Aus  $\operatorname{Rang}(\underline{XY}) \leq \operatorname{Min}(\operatorname{Rang}(\underline{X}), \operatorname{Rang}(\underline{Y}))$  [17, S. 70] folgt:

 $Rang(\underline{A}) = n$   $Rang(\underline{B}) = n$ Somit ist der Satz bewiesen.

Wegen dieses Satzes stellt die Annahme der Existenz von  $\underline{A}^{-1}$ bezüglich der Beobachtbarkeit keine Einschränkung dar. Die Zahl der beobachtbaren Systeme wird daher stark reduziert.

Mit Hilfe der Transformation (17) erhält man:

 $\underline{X} = \underbrace{\widetilde{X}}_{d} - \underline{A}^{-1} \underbrace{\widetilde{d}}_{d}$ (22)  $\underline{d} = \underbrace{\widetilde{d}}_{d}$ (23)  $\underline{b} = \underbrace{\widetilde{b}}_{d} + \underbrace{C} \underline{A}^{-1} \underbrace{\widetilde{d}}_{d}$ (24)

Es sei hier bemerkt, daß tatsächlich eine Schätzung von  $\underline{x}$ und nicht von  $\underline{\tilde{x}}$  angestrebt wird. Da unser System nicht vollständig beobachtbar ist, erwartet man hier zuviel. Das Ergebnis ist ein scheinbares Versagen des Kalmanfilters, da Biasfehler bzw. sogar Divergenzen auftreten können. Diese Ursachen für Divergenzen wurde nach dem Wissen der Autoren im Fall der Navigation nicht intensiv untersucht, obgleich sie vermutlich in vielen Fällen als wesentlicher Grund für beobachtete Divergenzen in Frage kam.

#### 3.3 Zur Linearisierung des Modells

Bei dem hier geschilderten Navigationproblem liegt ein stark nichtlineares und zeitveränderliches System vor [siehe S.4]. Um die Kalmanfiltertheorie anwenden zu können, ist es notwendig eine Linearisierung durchzuführen.

$$\dot{\mathbf{x}} = \underline{f}(\mathbf{x}) + \underline{\xi}$$
(25)

 $y_{k} = \underline{G}_{k} \left( \underline{X}_{k} \right) + \underline{G}_{k}$ (26) ein nichtlineares System mit dem Zustandsvektor <u>x</u> (Ordnung n), bzw.  $\underline{x}_{k} = \underline{x}(t_{k})$ , den bekannten Vektorfunktionen <u>f</u> und <u>g</u><sub>k</sub>, dem weißen Eingangsrauschen <u>£</u>, dem diskreten Meßvektor <u>y</u><sub>k</sub> (Ordnung m)zum Zeitpunkt t<sub>k</sub> und dem diskreten weißen Meßrauschen <u> $\underline{G}_{k}$ </u>.

Linearisiert man (25), (26) um eine nominale Lösung <u>x</u> mit  $\dot{\underline{X}} = \underline{f}(\underline{X}) \quad \widetilde{\underline{Y}}_{\kappa} = \underline{g}_{\kappa}(\underline{\widetilde{X}})$ 

so folgt:

$$\dot{\underline{X}} - \underline{f}(\underline{\widetilde{X}}) = \frac{\partial \underline{f}}{\partial \underline{X}} \Big|_{\underline{X} = \underline{\widetilde{X}}} (\underline{X} - \underline{\widetilde{X}}) + \underline{\xi}$$
(27)

 $\begin{aligned}
\underbrace{\chi_{\kappa}}_{\kappa} - \underbrace{\mathcal{G}}_{\kappa} \left( \underbrace{\widetilde{X}}_{\kappa} \right) &= \left. \frac{\partial \underline{g}_{\kappa}}{\partial \underbrace{X}_{\kappa}} \right|_{\underbrace{X_{\kappa}}_{\kappa} = \underbrace{\widetilde{X}}_{\kappa}} \left( \underbrace{X_{\kappa}}_{\kappa} - \underbrace{X_{\kappa}}_{\kappa} \right) + \underbrace{\mathcal{G}}_{\kappa} \quad (28)
\end{aligned}$ mit den Jacobimatrizen  $\frac{\partial \underline{f}}{\partial \underline{X}}$  und  $\frac{\partial \underline{g}_{\kappa}}{\partial \underline{X}_{\kappa}}$ 

Nach Überführung in ein diskretes System erhält man:

 $\underline{X}_{K+4} - \underline{X}_{K+4} = \underline{\phi}_{\kappa} \left( \underline{X}_{\kappa} \right) \left( \underline{X}_{\kappa} - \underline{X}_{\kappa} \right) + \underline{\eta}_{\kappa} \quad (29)$ wobei  $\underline{\phi}_{\kappa}$ die zugehörige Transitionsmatrix und  $\underline{\eta}_{\kappa}$  ein dem

Rauschen  $\underline{\mathcal{E}}$  äquivalentes, diskretes Rauschen ist.

Wahl der nominalen Lösung:

Zur besseren übersicht werden die Navigationsgleichungen im folgenden Modell zusammengefaßt:

da hier Terme der Form r<sub>k/k</sub>-r<sub>k</sub> verschwinden

 $\dot{\underline{\mathbf{Y}}} = \underline{f}_{1}(\underline{\mathbf{Y}}, \underline{\alpha}, \underline{\varsigma}, \underline{\beta}, \underline{\beta}_{m})$   $\dot{\underline{\mathbf{X}}} = \underline{f}_{2}(\underline{\mathbf{Y}}, \underline{\alpha}, \underline{\varsigma}, \underline{\beta}, \underline{\beta}_{m})$   $\dot{\underline{\varsigma}} = \underline{f}_{1}(\underline{\mathbf{Y}}, \underline{\alpha}, \underline{\varsigma}, \underline{\beta}, \underline{\beta}_{m})$ (30)(31) $= \underline{f}_3(\underline{r}, \underline{\alpha}, \underline{\xi}, \underline{A}_m)$ (32)

- 16 -

- Ortskoordinaten und Geschwindigkeiten relativ zur Erde Winkel der Plattform gegenüber der Erdoberfläche gemessene Beschleunigung an den drei Beschleunigungsmessern
- zusätzliche Störungen wie Driften usw.

r

additives, weißes, gaußverteiltes Rauschen mit dem Mittelwert <u>o</u>.

Es werden jetzt Messungen mit Hilfe des Dopplerradars und der barometrischen Höhenmessung zu diskreten Zeitpunkten t<sub>k</sub> durchgeführt:

Um einen möglichst geringen Aufwand im Kalmanfilter zu erreie chen, wird die Linearisierung in den Gleichungen (30-32) um eine nominale Lösung durchgeführt, die sich wie folgt zusammensetzt:

<u>1) In den Komponenten von r(Gl. 30)</u> Hier wählt man die Lösungen der ungestörten Trägheitsnavigation (Gl. 2/1-6).  $\widetilde{r} = f_{4} \left( \tilde{r}, \underline{0}, \underline{0}, \underline{A}_{m} \right)$  (34)

 $\widetilde{\underline{r}} = \underline{f}_{\mathcal{I}} \left( \widetilde{\underline{r}}, \underline{0}, \underline{0}, \underline{\beta}_{m} \right) \qquad (34)$ Diese werden zu den diskreten Zeitpunkten t<sub>k</sub> jeweils neu mit  $\widetilde{\underline{r}}(t_{k}) = r_{k/k}$  gestartet.

Durch diese Wahl der nominalen Lösung vereinfacht sich die Kalmanfiltergleichung (3/3) zu

 $\widehat{F}_{k+1/k+1} - \widetilde{F}_{k+1} = K_{k+1} \quad (35)$ 

da hier Terme der Form  $r_{k/k} - r_k$  verschwinden.

#### 2) In den Komponenten von $\alpha(Gl.31)$

Die nominale Lösung ist hier  $\underline{\alpha}_{k}$ =0. Gestartet wird das Filter mit  $\hat{\underline{\alpha}}_{0}$ =0. Zum Zeitpunkt t<sub>1</sub> erreicht es den Wert  $\hat{\alpha}_{1/1}$ . Um eine möglichst erdparallele Ausrichtung der Plattform zu erreichen, wird sie jetzt mit Hilfe von Servomotoren um  $\hat{\alpha}_{1/1}$  zurückgedreht, so daß sich dann wieder als Schätzwert der Lage von  $\underline{\alpha}$  $\hat{\underline{\alpha}}_{1/1}$ =0 ergibt. Dieser Vorgang wird von Zeitpunkt zu Zeitpunkt wiederholt. Es ergibt sich hier die gleiche einfache Struktur der entsprechenden Kalmanfiltergleichung wie in 1.)

3)In den Komponenten von (G1.32)

Hier wird eine Linearisierung um einenPrädiktionswert durchgeführt, wie sie beispielsweise in [1 S.181] angegeben wird. Die entsprechende Gleichung (3/3) behält ihre vollständige Struktur.

$$\begin{aligned} (dV_{E}) &= (2\delta\Omega_{2} + \delta S_{2})V_{Nc} + (2\Omega_{2c} + S_{2c})\delta V_{N} - (2\delta\Omega_{N} + \delta S_{N})V_{2c} - (2\Omega_{Nc} + S_{Nc})\delta V_{2} \\ &+ \gamma A_{Nm} - \beta A_{2m} + \varepsilon_{E} + b_{E} \end{aligned}$$
(36)  

$$(dV_{N}) &= \delta S_{E}V_{2c} - (2\delta\Omega_{2} + \delta S_{2})V_{Ec} - (2\Omega_{2c} + S_{2c})\delta V_{E} + S_{Ec}\delta V_{2} \\ &+ \alpha A_{2m} - \gamma A_{Em} + \varepsilon_{N} + b_{N} \end{aligned}$$
(37)  

$$(dV_{2}) &= (2\delta\Omega_{Nc} - \delta S_{N})V_{Ec} + (2\Omega_{Nc} - S_{Nc})\delta V_{E} - \delta S_{E}V_{Nc} - S_{Ec}\delta V_{N} \\ &- 2g_{0}(R_{0}/R_{c})^{2}\delta R/R_{c} + \beta A_{Em} - \alpha A_{Nm} + \varepsilon_{2} + b_{2} \end{aligned}$$
(38)  

$$(dO) &= -\delta S_{E} \end{aligned}$$
(40)  

$$\dot{\sigma} &= -\delta V_{N}/R_{c} + \beta \omega_{2c} - \gamma \omega_{Nc} + \Delta E \end{aligned}$$
(41)  

$$\dot{\beta} &= \delta V_{E}/R_{c} + \beta \omega_{2c} - \gamma \omega_{Nc} + \Delta E \end{aligned}$$
(41)  

$$\dot{\gamma} &= \delta S_{2} + \delta \Omega_{2} + \alpha \omega_{Nc} - \beta \omega_{Ec} + \Delta Z \end{aligned}$$
(42)  

$$\dot{\gamma} &= \delta S_{2} + \delta \Omega_{2} + \alpha \omega_{Nc} - \beta \omega_{Ec} + \Delta Z \end{aligned}$$
(43)  

$$\dot{\gamma} &= \delta S_{L} + \delta \Omega_{L} + \alpha \omega_{Nc} - \beta \omega_{Ec} + \Delta Z \end{aligned}$$
(43)  

$$\dot{\gamma} &= \delta S_{L} + \delta \Omega_{L} + \alpha \omega_{Nc} - \beta \omega_{Ec} + \Delta Z \end{aligned}$$
(43)  

$$\dot{\gamma} &= \delta S_{L} + \delta \Omega_{L} + \alpha \omega_{Nc} - \beta \omega_{Ec} + \Delta Z \end{aligned}$$
(43)  

$$\dot{\gamma} &= \delta S_{L} + \delta \Omega_{L} + \delta S_{L} + \delta S_{L}$$

Der Index c kennzeichnet die mit Hilfe der Trägheitsnavigationsgleichungen (2/1-12) berechneten Größen. 18 -

L

Die barometrische Höhenmessung wurde in dieser Arbeit nicht in das Modell mit aufgenommen. Ein Modell dieser Höhenmessung findet man in [105.269f.f.]

Für die Dopplergeschwindigkeitsmessung wurde folgendes nichtlineare Modell aufgestellt (siehe S.7)

$$V_{GD} = \sqrt{V_{E}^{2} + V_{N}^{2}} + b_{v} + W_{GD} \qquad (45)$$

$$\alpha_{dD} = \arctan(V_{E}/V_{N}) - \gamma + b_{\alpha} + W_{d0} + \begin{cases} 0 & V_{N} \ge 0 \\ \pi & V_{N} < 0 \end{cases} (46)$$
(Bezeichnung siehe Seite 7)

Als linearisiertes Modell ergibt sich:

$$\delta V := V_{G} - V_{GC} = (V_{EC} / V_{GC}) \delta V_{E} + (V_{NC} / V_{GC}) \delta V_{N} + b_{V} + W_{GD}$$
(47)

$$\delta \alpha := \alpha_d - \alpha_{dc} = \left( V_{NC} / V_{GC}^2 \right) \delta V_E - \left( V_{EC} / V_{GC}^2 \right) \delta V_N - \gamma + b_\alpha + W_{dD}$$
(48)

)

mit

$$V_{GC} = V_{EC}^{2} - V_{NC}^{2}, \quad \alpha_{dc} = \arctan(V_{EC}/V_{NC}) + \begin{cases} 0 & V_{NC} \gg 0 \\ \pi & V_{NC} < 0 \end{cases}$$

Im Kalmanfiltermodell werden alle numerisch vernachlässigbaren Terme weggelassen. Dabei sind die Entscheidungen oft nicht einfach, da Abhängigkeiten von der Position auftreten. Außerdem werden die Positionsfehler  $\delta\theta$  und  $\delta\gamma$  nicht betrachtet, da diese als nicht gemessene Integriererausgänge nicht beobachtbar sind. Die Farbigkeit der Drift wird im Filter durch die Annahme von integriertem, weißen Rauschen berücksichtigt. Die Nullpunktsfehler b<sub>a</sub> und b<sub>v</sub> der Dopplermessung werden entsprechend dem Abschnitt Beobachtbarkeit ins Filter mit einbezogen. Die Nullpunktsfehler der Beschleunigungsmesser werden im Modell nicht mit berücksichtigt.

$$\begin{vmatrix} \mathbf{v}_{E} \\ \mathbf{v}_{N} \\ \mathbf{a} \\ \mathbf{\beta} \\ \mathbf{v}_{N} \\ \mathbf{a} \\ \mathbf{\beta} \\ \mathbf{v}_{R} \\ \mathbf{a} \\ \mathbf{k} \\ \mathbf{v}_{R} \\ \mathbf{v}_{R}$$

Da die Messungen ∫y nur zu diskreten Zeitpunkten anfallen, wird zu einem zeitdiskreten System übergegangen. Die Intervallänge ∆T sei konstant.

Die Matrix, die den Zustand zum Zeitpunkt  $t_k$  in den Zustand zum Zeitpunkt  $t_{k+1}$  überführt, heißt Transitionsmatrix und genügt folgender Differenzialgleichung [s. 2 5.22].

$$\oint (t) = \underline{A}(t) \oint (t) \text{ mit } \oint (t_k) = \underline{E}$$
(51)

wobei A(t) die Systemmatrix ist.

Innerhalb der Intervalle wird <u>A</u> als konstant angenommen. Dann berechnet sich  $\cancel{\phi}$  nach

Diese Reihe wird näherungsweise nach dem quadratischen Glied abgebrochen. Möglichkeiten,  $\oint$  auch ohne Lösung von (51) bei nicht im Intervall konstanter Matrix zu berechnen, sind in [14, S. 301] angegeben.

#### 4. Zur Simulation:

#### 4.1 Simulation der Flugzeugbewegung:

Es werden folgende Flugdaten vorgegeben: Die im folgenden angenommenen Daten sind teilweise aus [10 S.210] übernommen, teilweise aber ungünstiger gewählt, um das Filter besonders zu beanspruchen (siehe Bild 3).

Geschwinzigkeit, Höhe und Flugdduer wie Lei

ceisboril di Litt



# Fall B)

Geschwindigkeit, Höhe und Flugdauer wie bei Fall A).



Als Simulationsgleichungen der Trägheitsnavigation ergeben sich: (siehe S.4-5)

Die Farbigkeit der Driften wurde durch Integration von weißem Rauschen simuliert.

Das Gleichungssystem wurde mit Hilfe eines Runge-Kutta-Integrationsprogrammes vierter Ordnund mit automatischer Schrittweitensteuerung gelöst. Die statistischen Störgrößen wurden hierbei, als gaußverteiltes Rauschen angenommen (in Intervallen von 1 Sekunde stückweise konstant).

Die Simulationen wurden an einer TR\$\$0 des GRZ Berlin vorgenommen. STUL SSIN VENS

| nddegte an instantion                                        | Bezeichnung                                        | auna (Wertuillei                                                                                                                                            | Bemerkung                                                                            |
|--------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Nullpunktsfehler der<br>Beschleunigungsmesser                | be<br>br<br>bz                                     | $\begin{array}{c} 0.1 & 10^{-2} \text{ m/sec}^2 \\ 0.1 & 10^{-2} \text{ m/sec}^2 \\ 0.1 & 10^{-2} \end{array}$                                              | D                                                                                    |
| statistische Störungen<br>in den Beschleuni-<br>gungsmessern | ε <sub>ε</sub><br>ε <sub>Ν</sub><br>ε <sub>Σ</sub> | $\begin{array}{c} 0.1 \ 10^{-2} \text{m/sec}^2 \\ 0.1 \ 10^{-2} \text{m/sec}^2 \\ 0.1 \ 10^{-2} \text{m/sec}^2 \\ 0.1 \ 10^{-2} \text{m/sec}^2 \end{array}$ | weißes, gauß-<br>verteiltes dis-<br>kretes Rauschen<br>angegeben ist<br>die Streuung |
| Anfangswerte der Drift                                       | ΔE<br>ΔN<br>ΔZ                                     | 1.2 meru #<br>1.2 meru<br>1.3 meru                                                                                                                          |                                                                                      |
| Driftgeschwindigkei-<br>ten                                  | VE<br>VN<br>VZ                                     | 0.6 meru/h<br>0.6 meru/h<br>0.6 meru/h                                                                                                                      | weißes, gauß-<br>verteiltes<br>Rauschen,ange-<br>geben ist die<br>Streuung           |

ALL THOMAS STATES

Die Größenordnung der Störgrößen:

4.3 Simulation der Dopplergeschwindigkeitsmessung

Als Simulationsgleichungen ergeben sich: (siehe S.19)  $V_{GO} = \sqrt{V_E^2 + V_N^2} + b_V + w_{GO}$  $\begin{cases} 0 \quad fir V_N > 0 \\ TT \quad fir \quad V_N \leq 0 \end{cases}$  $\alpha_{dD} = \arctan(V_E/V_N) b_{\alpha} + W_{dD}$ 

Größenordnung der Störung:

|                                                    | Bezeichng. | Wert       | Bemerkung                                                   |
|----------------------------------------------------|------------|------------|-------------------------------------------------------------|
| Nullpunktsfehler in<br>Geschwindigkeitsmessung     | br         | 1m/sec     | e jo                                                        |
| Nullpunktsfehler in<br>Winkelmessung               | ba         | 0.604 min  | A S .                                                       |
| statistische Störung in<br>Geschwindigkeitsmessung | WGD        | 1.34 m/sec | weißes, gauß-<br>verteiltes,dis-<br>kretes Rauschen         |
| statistische Störung in<br>Winkelmessung           | V dD       | 3.1 min    | <pre>## weißes, gauß- verteiltes,dis- kretes Rauschen</pre> |

1 meru entspricht 0.015 grad/h

1.184

an an aigur 1986, Sea 1987 Baselin

\*\* angegeben ist die Streuung

Die Dopplermessung wurde nach 2 Minuten Flugzeit bei 1000 km/Std Geschwindigkeit eingeschaltet, und die Messungen wurden alle 5 sec durchgeführt.

#### 4.4 Simulation der barometrischen Höhenmessung

Es wurde von einer Wetterkarte ausgegangen. Die Druckschwankungen über 4000 km wurden ermittelt, und es ergab sich folgendes Fehlermodell (Bild 4).

#### 4.5 Simulation des Kalmanfilters

Es wurden die Gleichungen (3/3-6) gerechnet, wobei die Transitionsmatrix nach (3/52) berechnet wurde.

Die Werte für die Anfangswerte und die Varianzen sind

| Größe                                                        | Bezeichng. | Wert                            |
|--------------------------------------------------------------|------------|---------------------------------|
| Anfangswertvarianz in                                        |            |                                 |
| Geschwindigkeit in Ostrichtung                               | SV-        | $1.0 (m/sec)^2$                 |
| Geschwindigkeit in Nordrichtung                              | SV.        | $1.0 (m/sec)^2$                 |
| Fehler im Winkel um die Ostachse                             | X          | $0.25 \ 10^{-8} (rad)^2$        |
| Fehler im Winkel um die Nord-<br>achse                       | ß          | $0.25 \ 10^{-8} (rad)^2$        |
| Fehler im Winkel um die verti-<br>kale Achse                 | Y          | $0.25 \ 10^{-8} (rad)^2$        |
| Drift um die Ostachse                                        | ΔΕ         | $0,76 \ 10^{-14} (rad/sec)^{2}$ |
| Drift um die Nordachse                                       | AN         | $0.76 \ 10^{-14} (rad/sec)^2$   |
| Drift um die vertikale Achse                                 | 02         | $0.76 \ 10^{-14} (rad/sec)^2$   |
| Nullpunktsfehler in Doppler-Ge-<br>schwindigkeitsmessung     | 6,         | 1.0 $(m/sec)^2$                 |
| Nullpunktsfehler in Doppler-Win-<br>kelmessung               | ba         | $3.6 \ 10^{-7} (rad)^2$         |
| Kovarianz in                                                 |            |                                 |
| Rauschen in Driftgeschwindig-<br>keit um die Ostachse        | WE         | $0.72 \ 10^{-21} (rad/sec^2)$   |
| Rauschen in Driftgeschwindig-<br>keit um die Nordachse       | WN         | $0.72 \ 10^{-21} (rad/sec^2)$   |
| Rauschen in Driftgeschwindig-<br>keit um die vertikale Achse | Ŵz         | $0.72 \ 10^{-21} (rad/sec^2)$   |
| Rauschen in Doppler-Geschwin-<br>digkeitsmessung             | WGO        | $1.93 (m/sec)^2$                |
| Rauschen in Doppler Winkelmes-                               | WdD        | $0.824 \ 10^{-6}(\text{rad})^2$ |

- 25 -



- 26 - 08 -

5. Auswertung

# 5.1 Der Einfluß der Nullpunktsfehler in den Beschleunigungsmessern

Unter Vernachlässigung der numerisch kleinen Terme in Gl. (3/36, 37, 42, 43) ergab sich:

$$\delta V_{E} = \gamma A_{NM} - \beta A_{ZM} + b_{E} + \varepsilon_{E}$$
  
$$\delta V_{N} = \propto A_{ZM} - \gamma A_{EM} + b_{N} + \varepsilon_{N}$$
  
$$\dot{\alpha} = -\delta V_{N} / R_{c} + \beta \omega_{Zc} - \gamma \omega_{Nc} + \Delta E$$
  
$$\dot{\beta} = -\delta V_{E} / R_{c} + \gamma \omega_{Ec} - \alpha \omega_{Zc} + \Delta N$$

Im Filter sind die Größen  $b_E$  und  $b_N$  nicht implementiert. Aus der Substitution

$$\widetilde{\beta} = \beta - b_{\varepsilon}/A_{zm}$$
 bzw.  $\widetilde{\alpha} = \alpha + b_{w}/A_{zm}$ 

erkennt man, daß das Filter ihren Einfluß als Biasfehler in den Winkeln und in der Drift deuten kann.

$$\begin{split} \delta V_{E} &= \gamma A_{Nm} - \widetilde{\beta} A_{Zm} - \mathcal{E}_{E} \\ \delta V_{N} &= \widetilde{\alpha} A_{Zm} - \gamma A_{Em} - \mathcal{E}_{N} \\ \widetilde{\alpha} &= - \delta V_{N} / R_{c} + \widetilde{\beta} \omega_{Zc} - \gamma \omega_{Nc} + \widetilde{\Delta} E \\ \widetilde{\beta} &= - \delta V_{E} / R_{c} + \gamma \omega_{Ec} - \widetilde{\alpha} \omega_{Zc} + \widetilde{\Delta} N \end{split}$$

mit 
$$\Delta \tilde{E} = \Delta E - b_{E}/A_{ZM}$$
 bzw.  $\Delta \tilde{N} = \Delta N - b_{N}/A_{ZM}$ 

Dieser Einfluß bestätigt sich auch für das nichtlineare Modell an Hand`der Simulationen:

Bild 5 zeigt, daß die Geschwindigkeitsschätzung kaum von den Nullpunktsfehlern abhängt.

Aus Bild 6 ist ersichtlich, daß der Nullpunktsfehler einen Biasfehler in den Neigungswinkel  $\alpha_i \beta$  — hier ist nur  $\alpha$ angegeben - hervorruft.



Beschleunigungsmessern

28

.





# 5.2 Der Einfluß der Nullpunktsfehler in der Doppler-Geschwindigkeitsmessung

Im Abschnitt Beobachtbarkeit wurde für das linearisierte, zeitunabhängige System die Nichtbeobachtbarkeit gezeigt. An sich ist die Untersuchung des nichtlinearen Modells notwendig. Gedanken des Vorgehens in dieser Richtung findet man in [15] . Es soll simulatorisch geprüft werden, inwieweit das nichtlineare System ebenfalls nicht beobachtbar ist. Dazu wurden zwei Anfangszustände gesucht, die beim linearen System auf die gleichen Meßgrößen führen. Das nichtlineare System wurde mit diesen Anfangswerten gestartet.

Anfangszustand I:

$$\delta V_{E}(t_{a}) = \delta V_{Eo}$$
$$b_{v} = b_{vo}$$
$$b_{\alpha} = b_{\alpha o}$$
$$\Delta N(t_{o}) = \Delta N_{o}$$

Anfangszustand II:

$$\begin{aligned} \delta V_{E}(t_{o}) &= \delta V_{EO} \cdot R_{d} \Delta N_{o} \\ b_{v} &= b_{vo} - \frac{V_{EC}}{V_{GC}} / \Delta N_{o} R_{c} \\ b_{\alpha} &= b_{\alpha o} - \frac{V_{NC}}{V_{GC}^{2}} / \Delta N_{o} R_{c} / L = L_{o} \\ \Delta N(t_{o}) &= 0 \end{aligned}$$

In den übrigen Zuständen wurden in beiden Fällen die gleichen Anfangswerte gewählt. Bild 7 zeigt, daß das Filter den Anfangswert von  $\mathscr{SV}_{\mathcal{E}}$  nicht berücksichtigt, sondern ihn über das genannte Zeitintervall beibehält.

Aus Bild 8 ist ersichtlich, daß die Schätzung der Drift in beiden Fällen fast identisch verläuft und sich die Nichtlinearitäten bzw. Zeitabhängigkeit erst nach Stunden bemerkbar machen.

Aus diesen Simulationen folgt, daß bei diesem gewählten Kurs das nichtlineare System ebenfalls als nicht beobachtbar anzusehen ist.

#### 5.3 Der Einfluß von Manövern

Um den Einfluß eines Manövers zu untersuchen, wurde der Kurs II (siehe Seite22) simuliert. Es wurden wieder zwei verschiedene Anfangswerte gemäß (S.30) gewählt. Die Kursänderung macht sich als deutliche Spitze bemerkbar, aber sowohl die Nichtbeobachtbarkeit als auch die Winkelverschiebung bleiben erhalten (siehe Bild 9, 10, 11).

#### 5.4 Vergleich mit reiner Trägheitsnavigation:

Für Kurs II wurden die Ergebnisse noch mit der reinen Trägheitsnavigation verglichen. An Bild 12 erkennt man die systematischen Fehler der Trägheitsnavigation (84 Minuten Fehler). Die Fehler mit Filter sind eine Größenordnung kleiner, aber bei ihnen machen sich Manöver stärker bemerkbar.

#### Schlußbemerkung

Auftretende Divergenzen in der Positionsbestimmung wurden durch die Nichtbeobachtbarkeit des Modells erklärt. Diese Divergenzen beruhen in der gleichzeitigen Schätzung von Drift und Nullpunktsfehlern in der Doppler Geschwindigkeitsmessung.

Es ist möglich, durch eine 2-Lagenbodenausrichtung (two position ground align-ment, siehe (14), Seite 311 ) die Driften in Ost und Westrichtung relativ genau zu schätzen, da man hier die Bewegung der Plattform relativ zur Erde kennt ( $\delta V_E = 0, \delta V_N = 0, \delta V_N = 0$ ,  $\delta V_2 = 0$ ). Da sich die Driften nur langsam ändern, können diese



Geschwindigkeit in Ostrichtung

32



in der Dopplergeschwindigkeitsmessung

Drift um die Nordachse





Fehler in Ostgeschwindigkeit



Drift um die Nordachse

. :





Fehler in Nordgeschwindigkeit

7

geschätzten Werte auch für die anfängliche Flugphase übernommen werden. Dieses Modell ist beobachtbar, und es sind dann biasfreie Schätzungen möglich, was auch durch weitere, hier wegen Platzmangel nicht näher beschriebene Simulationen bestätigt wurde.

shiwr in Rondgeschwindlike

# Literatur

| [1]                                   | Aoki, M.:                                                  |
|---------------------------------------|------------------------------------------------------------|
|                                       | Optimisation of Stochastic Systems;                        |
| eutresim                              | Academic Press New York (1967)                             |
| [ ]                                   | Fortros bass                                               |
| [2]                                   | Brockett, R.W.: (ISEL) LIER-ward and                       |
| Savant,                               | Finite Dimensional Linear Systems;                         |
|                                       | John Wiley and Sons, New York (1970)                       |
| [3]                                   | Broxmeyer, C.:                                             |
| . ,                                   | Inertial Navigation Systems;                               |
|                                       | Mc Graw-Hill, New York (1964)                              |
| [4]                                   | Gantmacher. F.R.:                                          |
| [-]                                   | Matrizenrechnung                                           |
|                                       | VEB Deutscher Verlag der Wissenschaften (1965)             |
| 6.2                                   | Application of Kalean Fills, i co the C+5                  |
| [5]                                   | Gelb, A., Sutherland Jostno bus somebiol                   |
| 8                                     | Software Advances in Aided Inertial Navigation             |
|                                       | Systems;                                                   |
|                                       | Navigation, Vol. 17, Nr. 4, S.358-369 (1970)               |
| [6]                                   | Jazwinski, A.H.:                                           |
|                                       | Adaptive Filtering;                                        |
| 04°                                   | Automatica, Vol. 5, S.475-485 (1969)                       |
| · · · · · · · · · · · · · · · · · · · | A Gosparison of the Effectiveness of some Ad               |
| 161 y 0                               | Optimal Filtering Techniques aprilled for                  |
|                                       | On the General Theory of Control Systems;                  |
| (0761) 51                             | Proceedings of the first IFAC Congress 5.481-492 (1960)    |
| [8]                                   | Kalman, R.E., Falb, P.L., Arbib, M.A.:                     |
|                                       | Topics in Mathematical System Theory;                      |
|                                       | Mc Graw-Hill (1969)                                        |
| [0]                                   | Krogmann, U.;                                              |
| L 7]                                  | Regressionsverfahren zur ontimalen Ausrichtung             |
|                                       | kreiselstabilisierter Plattformen.                         |
|                                       | Posselsungstaaliisieltel Flattionmen,                      |
|                                       | Regelungsteennik und Prozesuatenverarbeitung, Mi. 2 (1972) |
| [10]                                  | Leondes, C.T. (Editor):                                    |
|                                       | Theory and Application of Kalman Filtering                 |
|                                       | AGARDograph 139,                                           |
|                                       | Technical Editing and Reproduction Ltd., Harford House,    |
|                                       | London (1970)                                              |

- [11] Sage, A.P., Melsa,J.L.: Estimation Theory with Applications to Communication and Control; Mc Graw-Hill (1971)
- [12] Savant, C.J., Howard, R.C., Salloway, C.B., Savant, C.A.: Principles of Intertial Navigation; Mc Graw-Hill, New York(1961)
- [13] Schlee, F.H., Standish, C.J., Toda, N.F.: Divergence in the Kalmanfilter; AIAA J., Vol. 5, No. 6, S.1114-1120 (1967)
- [14] Schmidt, S.F., Weinberg, J.D., Lukesh, J.S.: Application of Kalman Filtering to the C-5 Guidance and Control System; AGARDograph 139 (siehe 4 ), S.289-334
- [15] Schönwandt, U.: Approximations to Nonlinear Observers; Automatica May 73
- [16] Sidar, M., Bar-Shlomo, Y.: A Comparison of the Effectiveness of some Adaptive Optimal Filtering Techniques applied to the Gyrocampassing Problem; Preprint of the 5th IFAC Congress p.p.481-492 (1970)
- [17] Zurmühl, R.: Matrizen und ihre technischen Anwendungen; Springer Verlag Berlin (1964)

Qr,

